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A particle code -was written using weighted pa&k a zinc! a qtiiet start techniqxue % 
simtuiate the nonlinear propagation of whistler waves parallel t.2 an external magnetic 
field. The algorithm is derived from the Darwin Lagrangian by a variationa method x15 
two versions of the code are considered, using linear and quadratic splines. PJttmerkal 
effects due to the discrete initial loading of the particles in paral!el velocities, perpen- 
dicu!ar velocity phase angles and positions are analyzed; and the perfxmance of %c 
1inea.r and quadratic versions of the code are compared. 

This paper presents a particle. simulation code primarily designed to simukue the 
nonlinear propagation of whistler waves parallel to an externai magnetic fieid 
in an electron pl2sma with a stationary posit&e neutrahzmg background, ‘This 
code has recently been applied to numeric21 studies related to the theory of trig 
gered Very-Low-Frequency (VLF) radio emissions from the Magnetosphere !?.I! 
and is applicable to loss-cone diffusion effects m controlled thermonuclear fusion 
devices In particular it has been used to simulate the “antenna effect” in the mopa- 
gation of whistler wavepackets and to investigate a plasma mstability due to $~ase 
correlation of the electron perpendicular veiocities [Zj. The se apphcations x3%: be 
published elsewhere and the present p2per is devoted to a description of the 
algorithm and a study of numerical etfects due to the discrete nature of the particle 
and field representations. 

The whistler mode corresponds to plasma waves propagatmg in the direction of 
an externally applied magnetic field BO with circul2rly polarized wave fields. In the 
problems considered in this paper propagation parallel to BO will be assumed. ‘The 
wave vector potential A in this case is perpendicular to BO and at atry given time the 
tips of the local A vectors form a helix as shown in Fig. Ia. The dispersion relati.on 
for the whistler mode is 
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FIG. 1. (a) Geometric definition of a whistler wave showing the external magnetic field BO , 
the wave vector potential A and a typical electron perpendicular velocity vL . (b) Dispersion curve. 
(c)Parallel velocity distribution function showing the phase velocity CO/~ and the resonant velocity 
VR- 

Here vz and vL are the electron velocities respectively parallel and perpendicular to 
B OJ is the frequency, k is the wavenumber, OJ~ = eB,,/m is the electron cyclotron 
fr&uency, u 9 = (47re2@n)112 is the plasma frequency, tz,, is the electron density, 
-e and rrz are the electron charge and mass and c is the speed of light [3]. This 
dispersion relation shows that the whistler frequency CO is smaller than the cyclotron 
frequency, Fig. lb, and that a resonance exists for electrons having a parallel 
velocity near L’~ = (OJ - UJ#, Fig. lc. Resonant electrons travel in opposite 
direction from the wave and as they gyrate with angular velocity COG , their perpen- 
dicular velocity remains in phase with the local wave vector potential, causing them 
to interact strongly with the wave. This results in the cyclotron damping or amplifi- 
cation of the wave. In the case of a large-amplitude wave, resonant electrons can 
become trapped in the sense that the phase angle C of their perpendicular velocity 
relative to the 1ocaJ vector potential oscillates at the trapping frequency 
OJ= = k(eAvJmc)lp [4]. 

Note that the integral in Eq. (1) can be integrated with respect to vL to give a 
dispersion relation which depends only on the moments Q(VJ = J v,f dvL and 



&uJ = J ~~~~~~~~ off with respect to uL . Thus the hnear behavior of the plasma is 
not altered by assuming an electron distribution which is monoenergetic in the 
perpendicular direction for each value of the parahel velocity, i.e,? 

J-C% 9 VJ = f~(z&) S[VL - vL~(vz)]s 

provided that the moments Q(UJ and Q(UJ are unchanged. Proper choice of the 
two functions &(xX) and PJLI~) can reproduce both moments Q(LYJ arrd T~~(c~:I 
mdependently, mcluding for example the moments of a loss-cone distribution. for 
which the ratio Q(u~)/Q(u~) = &(zJ~) is a function of cA . X-I& simphfication 
allows the study of a number of problems with particles distribtued around a 
single circle in the ~1~ Y ZIP plane for each value of U~ ~ and limits the need for a 5~1~ 
distribution of particles to the study of effects due to energy spread m the perperr- 
dicular direction. 

The present code is one-dimensional with spatial variation along the external 
magnetic field only (TX direction) and periodic boundary conditions with period&y 
length L. CMy the motions of electrons are considered and the ions are replaced 
by a umform positive charge distribution. The phase space is four- 
with position x and three velocities uz ~ Us and u5 . In order to study low-amphtude 
phenomena3 a quiet start method is used with a regular initial Ioading of the 
simulation particles in phase space. For this purpose the .x> uz pi.ane is covered 
with a grid with mesh sizes Ax and L!ZJ~ , Fig. 2a, and a set of weighted simuiatkn 
particles is loaded at each grid point (x, Us). Each S&K consists of particks with 
perpendicular velocities distributed at regmar angular intervals A0 around con- 
centric circles in the ~7.~ , vz plane as shown in Fig= 2b‘ The charge over mass ratio is 

(aI (b> 

F1e 2. Grid structure defining the discrete leading of particles in phase space 
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-e/m for all simulation particles, but the mass (and charge) of the simulation 
particles are chosen proportional to the local value of the initial distribution 
function in phase space. This regular loading of weighted particles avoids the 
undesirable initial fluctuations present in the more conventional random loading 
techniques, but it is responsible for numerical effects which excite nonphysical 
perturbations. The simulation of low-amplitude phenomena over a reasonable 
time therefore requires an understanding of these anomalous excitations and the 
selection of the proper algorithm and numerical parameters to minimize their 
effect. 

The algorithm used to compute the self fields and to advance the particles is 
described in Section 2. Two versions of the algorithm are considered using linear 
and quadratic spline interpolations of the potentials. The numerical effects due to 
discrete loading of the particles are considered in the next three Sections. The first 
effect, to be considered in Section 3, is the whistler-mode beaming instability 
resulting from the interaction of discrete sets of beams with a finite velocity 
separation Au.~ . The second efTect is due to the discrete distribution in the angular 
phase 0 of the perpendicular velocities of the particles, which causes an excitation 
of electrostatic modes. This effect is discussed in Section 4. A third type of non- 
physical perturbations results from the finite grid spacing &. The discrete 
representation of potentials yields whistler-mode aliases [5]. In addition, the regular 
loading of pakles at grid points causes an excitation of oscillations with frequen- 
cies m0 + 2~uAz~~,lAx where m0 is the main wave frequency and G is an integer. This 
effect is considered in Section V. The three types of numerical effects have been 
observed in numerical simulations and the results of a comparative study of these 
effects, using the linear and quadratic versions of the code, are included. 

2. ALGORITHM 

A. Finite-D$erezce Equations 

Since whistler waves propagate at low frequency, in the range 200-30,000 Hz for 
magnetosphere whistlers for example, it is possible to neglect radiation in khe self- 
field computations and the algorithm is derived from the Darwin Lagrangian [6, 71, 



Here G(x) and A(X) are the scalar and vector potentiais pO is the uniform icm charge 
density, = V x -A is the magnetic field, qi , mi , xi and vi denote the cl~arge~ 
mass position and velocity of the N simulation particles Note that in the first 
terIm only the Coulomb field Ez = -V@ is included irk the electric field enerpJO 
TGs is a distmctive feature of the Darwm K+agrangian which results $n the absence 
af retardatmn terms in the resulting field equations. The resuhing mo,de! retains 
mduced electric and magnetic fields, as well as the Cou1om.b field, bttt no radiat&zm. 

The fimte-difference equations for the fields are obmined by the variatizna1 
method of K R~ Lewis [S] by expandmg the mternal (or wave) potentials in ~me 
fmm 

FIG. 3. Linear and quxdrztic sphes. 

where the basis function T(X) also known as the @me determines the inter- 
polation used to defme values of @ and A for arbitrary values of x. Both linear a.nd 
quadratic splines, defined in Fig. 3, are considered. Substituting these expansions 
into the Lagrangian and observing that the vector potential is perpendicular to the 
direction af propagation yields 
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(5) 

where the dot denotes time differentiation, 

yj ZZI y(X - jAX) and vjf = dy(x - jAx)/dx. 

The equations for the particle dynamics are obtained by writing the Euler- 
L.agrange equations corresponding to the generalized coordinates xi , JJ~ , Z~ with 
i = l,..., N and adding the Lorentz force due to the external field I3 which is not 
included in the Lagrangian [9]. These operations yield 

and 

where the bracket in the left member of Eq. (7) is recognized as the perpendicular 
canonical momentum of particle i in the internal potential A. Particular forms 
taken by these equations in the case of linear and quadratic splines are given in 
Appendix A, 

The field equations are obtained by writing the Euler-L,agrange equations for 
the generalized coordinates aj , /&, and /& with j = l,..., J, 

and 

The first of these equations is recognized as Poisson’s equation and the second as 
Ampere’s law written in terms of the vector potential. The integral J C& TV’ dx is 
the appropriate form of the second derivative operator corresponding to the spline 



Y(X) and the sphne also defmes the charge sharing scheme to compute the charge 
and current densities in the right members of Eqs (8) and (9). The particular forms 
taken by the derivative operator and charge sharing scheme for Gnear and quadratic 
sphnes are given in Appendix A. 

Ihe particles and fields are advanced m time foh~wmg a method based on 
perpendiculas canonical momenta which has been used in previous codes using the 
Darwin model [lO]. The particle positions X~ and perpendicular velocities vLi ~ as 
well as the potentials zj and fij , are computed at times t2.4 f and the parallel velocities 
u$~ are computed at half time steps (12 - l/2) Ar as shawn m Fig. 4. It wih b.e 

convenient to denote vectors perpendicular to the direction of propagation m 
complex rmmber form with their y component represented by the real part and their 
z component represented by the imaginary part. With this notaion Eq‘ (7) takes thee 
form 

where 
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denote a modified form of the perpendicular canonical momentum of particle i at 
time 124l, then Eq. (11) yields 

and 

L.et us assume that the computation has proceeded to the point where all quanti- 
ties are known up to and including time (fr - 1) 4t. A leap frog step applied to 
Eq. (6) yields a$;“’ and xi%. The charge density may then be computed at time n4t 
and Eq. (8) yields the scalar potentials ajn as in electrostatic computations [ll]. 
Since the computation of either hi” or v& from Eqs. (12) or (12a) requires knowl- 
edge of A’& , the vector potentials ,!$I~ at the new time n4t must be computed first. 
This is achieved by substituting Eq. (12a) into Eq. (9) to eliminate v:~ and 
rearranging terms to obtain an equation for @ in terms of known quantities, 

In the case of the linear spline, the operator Jt yi, vj’ d-x takes the standard form 

l 
L 

#(x -j’4.x) y’(x - j4) dx = 
0 

! 

2/4x for j’ - j = 0, 
-1/4x for lj’ -j 1 = 1, (14) 

0 for jj’-jj > 1, 

and the second term in bracket in the left member of Eq. (13) is nonzero only for 
1 j’ - j 1 < 1. In this case the left member of Eq. (I 3) therefore reduces to three 
terms. 

A&i-l + BjPj + ci/Jj+l zz Dj 034 

where the quantities Aj , Bj , Cj and Di , which depend on known charge and 
momentum distributions, are defined in Appendix A. Writing Eq. (13a) with 
j = I,..., J and applying periodic boundary conditions yields a system of equations 
having a tridiagonal coefficient matrix with nonzero off-diagonal corner elements, 



In the case of the quadratic spline a similar system of equation, having a coe&ient 
matrix with five nonzero diagonals and three nonzero elements in each corner is 
obtamed~ A direct elimination procedure to solve such systems9 developed by 
Gibbons [III] is used in the present code. 

As a consequence of the Lagrangian formulation, the present algorithm far 
advancing particles conserves energy independently of the grid spacing AX. TX 
expression for the total energy is provided by the Hamiltonian 

The first term in the right member of Eq. (15) is the ekctrostatic energy* Ui . the 
second term is the magnetic energy U,\: and the third term is the kinetic enesgy UK of 
the system. This energy conservation appks only tc the discrete spatial represema- 
tion and is therefore exit only in the limit At -+ O‘ 

D, .i3 ~pk.w~~ rotion 

The f&k dif&rence equations for linear and quadratic sphnes are derived in 
Appendix A. These equations are written in normalized form with time measured 
in units of a;‘, position in units of the system’s length L and the potentials in units 
of (ttzicj L%JJ~~. It should be noted that since the algorithm accounts for both -~b.e 
self Coulomb fields and the self-induced fields (neglecting retardation efFects)T Tao 
characteristic lengths, the Debye length AD = -- / uth uD aud the c0hisionkss &in 
depth Ai,, = c/cop , need to be considered. The ratio of these iengths, AD/,InL = L):~~/c~ 
which must be sufficiently small to justify the absence OF retardation effects is 
therefore a significant dimensionless parameter of any computation. Similarly> two 
characteristic frequencies We and mC need to be considered and their ratio ~CJJUJ~ k 
another dimensionless parameter. 

Electron energies near 10 KeV correspond to a ratio u~~/c z 0.11~ This ~ou!d 
be a realktic value for energetic electrons in the magnetosphere or for centrokd 
fusion experiments. Values of the ratio UJ mD in the magnetosphere9 in the eq~ua- 
torial region at three Earth radii, are near 0.25. ln a number of simmations carSed 
out with this code, the values z~~rJc = 0.33 and ~AJCFJ~ = 02 were chosen to 
economize computing time, but it is felt that the quahtative results of such CXXX- 
putations retain their validity even though these values are 2 to 3 times larger than 
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realistic values. Computer simulations can rarely duplicate a physical phenomenon 
with realistic parameters. However it is possible to simulate different aspects of a 
problem with such parameters that enable the effects we seek to be observed within 
a reasonable length of computation. 

Two versions of the code, using linear and quadratic splines have been written 
for use on the CDC 7600. These codes use disk storage for particle data (5 words 
per particle) and runs with up to 5 . IO5 particles have been made for the simulation 
of wavepacket propagation. The computing times are approximately 18 psec per 
particle-time step for the linear spline and 26 psec per particle-time step for the 
quadratic spline. 

3. EFFFXT OF DISCRETE LOADING OF PARALLEL VELOCITIES 

The first effect considered is the whistler-mode equivalent of the beaming 
instability encountered in electrostatic problems [ll, 131. It is due to the discrete 
loading of particles with parallel velocities separated by a finite interval &I$ . This 
causes the distribution function to take the form of a sum of 6 functions, 

and the dispersion relation, Eq. (I), becomes 

where z = (U - coJ,/k. Here the electron distribution has been assumed to be 
monoenergetic in the perpendicular direction. Each beam gives two roots of the 
dispersion relation, which are either real or complex conjugates. The complex 
conjugate roots yield an unstable behavior of the corresponding beam. Since the 
number of beams is finite it is possible to determine these roots by solving Eq. (16) 
numerically and the linear behavior of any individual beam may be computed 
exactly. The result of such a computation is given later in this Section. However, the 
maximum growth rate may be found analytically by following the method of 
Dawson [13]. Identities are used to replace the sums over u in Eq. (16) by integrals 
over U= , as in the original dispersion relation, plus singular terms which account 
for the poles at .zO = IJLIZI~~ . This analysis yields results similar to those of electro- 
static case [1 11. For Aa% -+ 0 and a Maxwellian distribution function 

f. = eXp[-~(~/Z~th)~]/((2~)‘/’ uth) 



the complex frequencies m0 = a0 + i& are given by 

where <g = CJAL~~/(~Z! vt,rJ and Z(c) is the plasma dispersion function [:4]. These 
results show that the natural frequencies LX,, correspond approximately to the 
Doppler frequencies of the beams, shifted by the cyclotron frequency, whiie the 
growth rates pD are approximately proportional to the product kAu7 . 

The dependence of the growth rates f10 on u has two relative maximal The 5~. 
maximum corresponds to the most intense beam. i.e., the central beam CF = 0 for 
a Maxwellian distribution. The frequency and growth rate for this mode are 
obtained by setting cS = CI in Eqs. (17) and (18) which gives a frequency ~~~~ = ti,: 
equal to the cyclotron frequency. The second maximum corresponds to the beam 
closest to the resonant velocity vR = (a,, - ~~,./k for which the frequency iies close 
to the whistler frequency w,, . This second relative maximum is sigmficant er-11;~ in 
the case of a large population of resonant electrons and> except for this case? the 
first relative maximum, corresponding to 0 = 0, may therefore be taken as an 
estimate of the maximum growth rate. For example, with kc/~~ = :I QsV 
wG = wJ2 and L>Jcth = d2 (i.e., TL = T,,) Eq. (18) gives /30z0 = O.Q~IG~ for 
cth = c/3 and /30z0 = 0.02%~~ for ~ih = c/4.5 [l5]. The growth rates obtamed 
from rmmerical solutions of the dispersion relation, Eq.. (IS)> for the above examples 
are given in Table I. For Cth = c/3 the relative maxima *which would CXXLN a; 
cs - 0.56~~ and CIJ~ = 0.13~~ are very broad and merge into a single wide spectrums 
&&use of the large number of resonant particles in this case9 the growth rate near 
LX~+ = w0 = O.l3w@,,+ = 0.047~~) is somewhat larger than the above estknate 
(pO+ = 0.041~~) but the difference remains smak For LQ, = c/4.5? fewer resonant, 
electrons are present, and both maxima are evident. The maximum near zTzO z w,, 
clearly dominates and agrees with the estimated maximum. 

A test was carried out to observe in some detail the occurrence of the beamins 
mstabihty with the above parameters in the case 21th = ~13. The particles XI this 
test were loaded uniformly in x with Ax == L/64 and Acz == c/5 $1 beams). in the 
perpendicular direction the distribution was monoenergetic and umform in phase 
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TABLE I 
Roots of the Dispersion Relation, Eq. (16), for the Whistler Beaming Instability with kc/o+,=l/ ~13, 

’ WC!U!> : l/2, AZ = c!5, TL = T,, and Two Values of the Thermal Velocity, ZYI, = c/3 
and LQ, = c/4.5 

-5 
-4 
-3 
-2 
-1 

0 
I 
2 
3 
4 
5 

%I?” /&I% 
~-- 

1.077 6.23 x lO-8 
0.961 1.28 x 10-P 
0.842 2.16 x 10mz 
0.721 3.06 x 1OW 
0.597 3.79 x 10-z 
0.472 4.23 x 1OP 
0.347 4.38 x 10-2 
0.227 4.46 x IOF 
0.120 4.66 x lO-z 
0.028 3.27 x lO-2 

-0.079 1.36 x lO-2 

%/% Pdh 

1.077 3.20 x lo-* 
0.962 1.85 x 10-Z 
0.846 6.85 x lO-3 
0.726 1.60 x IOF 
0.599 2.44 x lO-S 
0.468 2.45 x IO-? 
0.343 3.03 x 10-z 
0.241 0 
0.123 1.13 x 10-2 
0.037 5.95 x 10-S 

-0.077 7.06 x lO-4 

angles with A0 = 2~164. This choice of Ax and At9 reduces as much as possibIe 
other numerical effects described in Sections IV and V, while Aucc is purposely 
chosen rather large to emphasize the beaming instability. An initial perturbation is 
applied to the central set of beams, which gives to this set of beams a small- 
amplitude circurlarly polarized perpendicular velocity: 

with filn = vJ40. 
The central-beam perturbation as a function of time for this test is given in 

Fig. 5. The solid line shows the result of a Laplace transform solution in time of 
the linearized equations for 2K + I beams with a spatial dependence of the form 
exp(&x). This solutions is obtained from the 2(2K -t 1) roots of Eq. (16), 22 roots 
in this case, superimposing the corresponding modes with their proper initial 
excitation and evaluating the time behavior of the combination. The circles give 
the results of the simulation code and the broken line shows the maximum growth 
rate (/&, = 0.041~0~) obtained analytically. 

The results of this test may be interpreted as follows. The current due to the 
central beam perturbation produces circularly polarized fields which drive the off- 
center beams of the plasma, causing them to acquire circularly polarized velocity 
perturbations and causing the perturbation of the central beam to decrease initially. 
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The perturbations of the off-center beams grow at the exponential rates pG bu? are 
at first phase mixed since they advance with different veiocities. Ho.*everY as :he 
recurrence time T~ = 2rr/k.~I0~ = 54~;’ is approached these perturbations come 
back into phase producing strong fields which drive the central beam perturbation 
TV a large value as shown in Fig. 5 near ,! = 54~0;~. ‘The magnetic energy drops 
initially from Lr,,f = 0.i x 10-AUtOt at f = 0 to 19,~~ = GUI k 10-6Lf:0i at ; = J&S;‘> 
then regrows as f approaches +rR to reach a maximum UjM = 2.2 10--3L~~GL at 
f = 58~;‘. Note that the simulation results m Fig. 5 kvel off for i > %k~;‘. At 
this time the velocity perturbation in the x direction has reached a value 8~~ z 0~ in 
equal to half the beam separation. This causes the beams to merge and hnear 
theory is no longer expected to hold. 

TV. EFFECT OF DISCRETE LOADING OF PERPEX~ICUIAR VE:.OCKY PHASES 

The effect of initializing the particles with perpendicular velocities having discrete 
phase angles, separated by a finite interval 40 is considered in this section:. This 
effect has no equivalent in purely electrostatic simulations. The electron distribution 
is agam assumed to be monoenergetic in the perpendicular directicn, i6t.h per- 
pendicuiar velocities uniformly distributed at A4 values 19~~ = 2~/~/~14 of the phase 
angle, with ,u = I:..., iI4, and may be considered as A4 separate beams. Each beam 
is perturbed by the whistler wave and has a charge density perturbation .$I(:<)~ j.f 
these density perturbations were defined on a continuous variable X, they wouM 
be shifted with respect to one another in the .X direction so that 
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where k is the whistler wavenumber. In this case the perturbations would cancel 
each other and the total charge density would be uniform. In the simulation code, 
however, the charge density is computed only at discrete grid point in the x direction 
and this results in an incomplete cancellation of the charge densities which results 
in the excitation of electrostatic modes. 

This effect may be understood in terms of the simple example illustrated in 
Fig. 6, involving two beams p = 1 and p = 2 and four particles in each beam, 

x=0 L X=L 

/J=l J 
j=l 2 3 4 

F=2 e 
j =I 2 3 4 

l-Ax+ 

0 Particles 

FIG. 6. Example illustrating the effect of discrete loading of particIes in perpendicular velocity 
phase angles. 

each with a charge -eq,L/8 initially located at four grid points j = I, 2, 3, 4. After 
some time has elapsed the particles of the first beam, p = I, have acquired 
sinusoidal displacements in the x direction due to the vL x BL force. Particles at 
j = 2 and 4 undergo the maximum displacement [ and particles at j = I and 3 
have zero displacements. The charge sharing scheme, using the linear spline, then 
yields charge densities at the grid points given by the vector 

p;=l = (-erz0/2){l, I - E, 1 + 2~, 1 - ~1. 

where E = (/Ax. The particles of the second beam, p = 2, acquire displacements 
which are 180’ out of phase from those of the first beam and the charge densities 
for this beam are given by 

pyz2 = (-eno/2){l + 2~, 1 - .5, 1, 1 - c}. 

The total charge density at each grid point, obtained by taking the sum of these 
vectors is then 

in which a second harmonic with amplitude j& = -erq,&,fAx is superimposed over 
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the umform charge. Since only the uniform charge is neutrzhzed by the ion back- 
ground, second harmonic electrostatic modes are excited in the plasmas 

In the general case the position of a particle is given by 

,#x = jAx + 5LhJ + pu (j$)? ,< 

where the displacement e jalk due to the interaction with the whistler wavme is of the 
form 

fjo” = p sin[Li-((p/M) - (j/J))]~ (j 33) 

Here the superscripts j, G and p define respectively the initizl position, pzrahel 
velocity and phase angle of the particle and J is the number of grid points ger 
whistler wavelength. This expression is introduced intc the charge density term of 
Eq. (8) to give 

Here nR denotes the resonant particle density and G,? CYY cJLI~~~ . Since resonant 
particles undergo large displacements they are the major contributors to the 
present effect and nonresonant particles have been neglected in Eq. (20). Sub- 
stituting Eq. (19a) into Eq. (20) and taking a discrete Fourier transform with respect 
to j’ yields, as shown in Appendix B, 

I 
-etch z J~~,n+D,J,.,,f(~~) e-~~i(~~~-~~~)~G~~ far rz = rcL$$ + qoJT 

pn - 
p=-m 

T=?-o+QJ/M 8.7 j -. l--j 
0 for 11 + r,,M + q,,J, 

Herep, q, q0 , r, r0 must be integers? Z~ = 2r(rz - pJ) ,$JL where ER is the Imaxnnum 
displacement of resonant electrons, JV denotes the Bessel function of the first kind 
of integer order and qrn is the Fourier transform of the base function denned in 
Appendix B. 

Nonzero harmonics occur with order fz = r&f + CJJ where rCI and q0 are 
arbitrary integers. For example, with J = 16 and M = l.2, electrostatic modes 
corresponding to the 4-th and 8-th harmonic are driven With J = ikf no electro- 
static mode harmonics are driven. The maFitude of & may be estimated as 

where CL+. is the trapping frequency, xTO&r is the value of 2 for which &&.z) reaches 
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its first maximum, b = 1 for the linear spline and b = 2 for the quadratic spline. 
This estimate, which is valid for o+-t 5 n is derived in Appendix B. 

Numerical simulations of cyclotron damping with linear and quadratic base func- 
tions have been carried out to illustrate this effect. In these runs a whistler wave with 
Wan = l/\/3 was initialized in a Maxwellian plasma with t$h = c/3, uLO = ~‘2 uth 
(monoenergetic in the perpendicular direction) and C+ = CJJ~/~. The initial magnetic 
energy isUM= 4.9 x 10-SUtOt and the initial trapping frequency is C+ = 4.5 x 10~%J~. 
From t = 0 to t = 500~;’ the magnetic energy is observed to decay at the rate 
(2~ = 0.0350~~) predicted by linear theory. This aspect of the simulation will be 
discussed in Section V and only the electrostatic energy, which would be zero in 
this case for a continuous plasma is considered now. For J = Al = 16 the electro- 
static energy remains negligible. IIowever, for J = 16, M = 12 the electrostatic 
energy increases as shown in Fig. 7 and resides entirely in modes 12 = 4 and 8. 

UP t 
FIG. 7. Excitation of electrostatic modes due to discrete loading of particles in perpendicular 

velocity phase angles. 

These results are in agreement with Eq. (21). Assuming a resonant particle density 
llR = o.o511(J, estimates of the ratio of electrostatic energy at t = 500~;~ to total 
energy, obtained from Eq. (22), are UE/UtOt e lo-’ for the linear base function 
and UEfUtOt C+ 0.4 x lO-s for the quadratic base function. These estimates agree 
qualitatively with the values observed in Fig. 7. 

5. EFFECT OF DISCRETE SPATIAL LOADING 

The effect of regular loading of the particles at the grid points in the .X direction 
is considered now. Assume that a whistler wave with mode number n propagates 
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through the plasma. As particles travel along this wave7 their perpendicukr 
velosities acquire perturbations with a spatial dependence of the form 

where the real part represents the y component of the velocity perturbation and the 
imaginary part represents its z component. Suppose that at some time t the particks 
of a given beam 0 fall exactly at the grid points as shown in Fig, ga. The transverse 

(al (bl 

FIG. 8‘ Example illustrating the effect of discrete spatid lozdizg of the pzrtic~es 

current density at grid pointj (for the linear sphne) is due only to the partic!e at this 
point= This current density is 

At a later time f + ~,,/2, where -rO = Ax/oAuz the particles will have drifted so that 
they are located midway between grid points as shown in Fig. Sb. The current 
density at grid point,j is now the sum of contributions from two particles? 

and is smaller than the current at time t. Thus as particles drift across the grid 
points the magnitude of the current fluctuates and these fiuctuations drive new 
waves with the same mode number fz as the original wave but with frequencies 
Loo = 2r+-O . 

When all the beams (i.e., all values of U) are considered there results a phase 
mking so that the vector potential j?ng due TV this effect remains small, except at 
times which are multiples of the “beat time” I-~ = LI.x/~u~ . At these times the 
contributions of all the beams are in phase and large deviations occur. 

This effect may be analyzed by a perturbation method presented in Appendix C. 
Consider the simulation of a whistler wave with mode number B, amphtude E.nti’, 
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frequency m0 and damping constant yO. The vector potential deviation due to 
discrete spatial loading is given by 

where CIJ~ = 2n-uAvx/Ax, 

(23) 

(241 

~‘2~ = 6~~ - OJ~ - kuAvx , 

b = 1 for the linear spline and b = 2 for the quadratic spline. 
This effect is evident in the behavior of the magnetic energy for the cyclotron 

damping simulation shown in Fig. 9, which corresponds to the run described at the 

5 

!!!L2 
” tot 

C b 1 Quadratic. 

FIG. 9. Deviation in magnetic energy from cyclotron damping due to discrete spatial loading 
of the particle. 

end of Section 4. In this case Avx/c = l/20 from which rB = 13.6~;’ and Eq. (23) 
gives 

~ = 2 I P2 I AUMFl 
lJ 

P 0.16 (linear spline), 
MB I I%? I 

= 0.01 (quadratic spline). 
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The deviations from cyclotron damping evident in Fig- 9 agree both in magnitude 
and frequency of occurrence with the above results, and are smaller9 by at least an 
order of magnitude, for the quadratic spline than for the linear spline. 

6. CONCLUSIONS 

A study of discrete particle effects in whistler simulation has been made using 
algorithms derived by the variational method of Ralph Lewis. This method provides 
a systematic procedure whereby the proper charge sharing scheme for the particles 
is derived in terms of the spline used in the interpolation of the potentials to yiekl 
energy-conserving algorithms. This perfect energy conservation (in the limit 
dr + 0) is unfortunately not accompanied by perfect momentum conservation and 
such algorithms are not necessarily optimal. However in the electrostatic case, 
energy-conserving algorithms of this type have been studied extensively [I$ 171 
and found satisfactory in simulations of small-amplitude phenomena [18]. T!xir 
application to whistler simulation appears therefore as a natural extensk~ of 
these earlier studies 

Numerical effects due to the discrete initial loading of the particles in lxxalkl 
velocities? perpendicular velocity phase angles and positions have been analysed in 
Sections 3,4 and 5 respectively. The results of numerical tests have been presented 
to confirm the analytical results and the performauce of two versions of tlx 
algorithm based on linear and quadratic splines have been compared- 

The effect of discrete loading in parallel velocities, i.e., the finite velocity incre- 
ment ADS, considered in Section 3, is the appearance of recurrence and of a 
whistler-mode beaming instability. As in the electrostatic mode, the recurrence 
time is TV = 27r/k4t>z and the growth rate of the instability scales approximately as 
k4~~~, where k is the mode number considered. Suf&.zientIy small values of ArYz must 
be used to keep this effect under control. Values of 40~ ranging from z,/40 to .KZJ 
with r&c = 1.13 have been used in a number of simulations without adverse eFec!s 
from recurrence or beaming instability. It should be noted that small values of 
bux not only lengthen the recurrence time and decrease the beaming instability 
growth rate, but also reduce the saturation level of the instability. This occx-s when 
adjacent beams merge due to either the whistler wave being skudied or the beaming 
instability itself. 

The effect of discrete loading in perpendicular veloci~f phases: ix.? the fi.&e 
phase increment A0 was considered in Section IV. This effect causes density 
fiuctuations which drive electrostatic modes and may modify the Whistler wave 
itself* The magnitude of these fluctuations is given by Eq~ (2~2)~ where M = 2r,/kC 
is the uumber of phase values, and is significantly 
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value of A4 close to the number J of intervals ~ZC per whistler wavelength is optimal 
since this effect vanishes for M = J. For distribution functions having a finite 
energy spread in the perpendicular direction it is possible to stagger the angles oU by 
phase-shifting the particles by an angle AOf2 on alternate concentric circles, instead 
of aligning them radially as shown in Fig. Z(b). This causes a partial phase mixing 
of the density fluctuations thereby reducing their amplitude without disrupting 
the quiet start. 

The effect of spatial loading at discrete intervals Ax, discussed in Section 5, is the 
appearance of fluctuations in the magnetic vector potential. These fluctuations are 
described by Eqs. (23) and (24) and, because of phase mixing between beams, 
remain small except at time intervals TV = Ax/Avz for which the perturbations of 
all beams are in phase. This effect may be controlled by choosing sufficiently small 
values of Ax and Avz and is also significantly smaller for the quadratic spline than 
for the linear spline. Typical values of Ax equal to 15th of the shortest wavelength 
of interest, with Az~~ = c/40 to c/20 for Vth = c/3 have been found satisfactory. 

The results of Section 4 and 5 show that the quadratic spline is significantly 
superior to the linear spline for the simulation of low-amplitude waves. These 
results also suggest that higher-order sphnes, having Fourier coefficients & 
dropping more steeply as ~2 increases may yield further improvement. This improve- 
ment, however, would have to be weighted against the increased complexity of the 
computations. 

In the simulation of large-amplitude whistlers the discrete particle effects dis- 
cussed in this paper become less important because the perturbations they generate 
remain small compared to the whistler wave itself. The advantage of the quadratic 
sphne over the linear spline becomes less obvious in this case. This conclusion has 
been confirmed in simulations similar to the example of Sections 4 and 5 but with 
a larger amplitude giving a trapping frequency C+ = 0.20~~ . 

APPENDIX A: FINITE DIFFERENCE EQUATIONS 

The finite-difference equations are written in normalized form with time measured 
in units of a;‘, position in units of the system’s length L and the potentials in units 
of (m/e) Lb n2. The system’s length L is related to the collisionless skin depth c/tip 
by the dimensionless ratio kM = LwP/c. 

I. Linear Spline 

Let j denote the closest grid point to the left of xi and let pi = (xi - jAx)/Ax, 
0 <pi < 1. Eqs. (6), (8), (lOa), and (13) take respectively the form 



where 

The second derivative operator takes the form 



where 
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APPENDiX B: ELECTROSTATIC! MODES AMPLITUDES 

Taking the discrete Fourier transform of Eq. (20) yields 

denote the Fourier transform vector of the spline, where b = 1 for the linear spline 
and b = 2 for the quadratic spline, then 



Substituting this expression and Eq. (19) into Eq. @Ij and carrying out the sum 
over j’ yields 

where zD = ~z-(H - pJ) [&, and fR is the maximum dispiacement of resonant 
electrons. The last exponentiai factor in Eq. (B2) is now expanded using the idenGty 

where Jv(z) denotes the Bessel function of the first kind of integer order [l9j~ After 
substituting this identity into Eq. (B2): the sum over p may be carried out to give 

The sum over j vanishes, except for 11 + YM = qJ> where q is an integer. Thus 
jja =# 0 only for in = rOi14 T qoJ where rO and qO are integers and Eq. (21) fok~s 

An estimate of j5n may be obtained by retam~ng omy the largest term in the 
sums over p and q in Eq. (21). This term corresponds to r = pO , i.e., to the lowest- 
order Bessel function, and to a value of zD corresponding to the -first maxkmum7 
X.r*M 9 of the Eessel function Jroibl . The maximum displacement of resonant 
electrons is given by tR ,CZ L(c+)~/~T for OJ+ 5 T where O+ is the trap5n.g 
frequency~ Thus the largest term in the sum over in corresponds to 

Consider a particle initiaiiy loaded at &l-x, with paralief velocity &u~ and per,- 
pendicular velocity phase angle @lo. A monoenergetic velocity distribution in the 
perpendicular direction is assumed with perpendicular velocity r-L0 ~ The position. 
and velocities of this particle at time t are given by 
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where p(f) denotes the displacement of the particle due to interaction with the 
whistler wave and 7juU(f) denotes its perpendicular velocity perturbation. Complex 
notations are used to denote VP and $0u with the real and imaginary parts along 
the y and z directions, respectively. 

The parallel component of the Lorentz force yields 

where &x, f) is defined in Eq. (4). Introducing the Fourier transform & of the 
spline defined in Appendix B yields 

where 

is the discrete Fourier transform of /Ij . Substituting this expression into Eq. (C4) 
and taking the Laplace transform defined by 

where u.,,~ = hmsAv.JL. 
The perpendicular canonical momentum equation yields 

d 
-& vy 

f 
- &- A) = icop~. 

and after transformations this equation gives 
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The perpendicular current density at grid pointy is giveu by 

where fzW = fO(~Az$) AZ?* is the relative particle density of beam G, This expression 
is mampulated by taking the Fourier transform with respect to j’? subst~~ut~~~ 
Eqs. (Cl) and ((I), linearizing with respect to the small quantities ffuU and qJSb 
and taking the Laplace transform with respect to f. These operations yield 

Substituting Eqs. (C5) and (C4) and carrying out the sums overj aud p gives 

The term corresponding to p = q = 0 in Eq. (CT,) is the current density 
associated with the whistler wave. The other terms are perturbations due to the 
discrete nature of the field representation and of the initial particle Ioading. Let .;he 
sum of these terms be denoted as ?ng. The deviation in the vector potential due to 
discrete spatial effects denoted as /z? ng, is obtained by evaluating the response ef the 
plasma to the perturbation current jng, 

where /< = 2mjL and the dielectric function D(k: u) may be written as 

Consider now the simulation of a whistler wave with a vector potential cf the 
form A(x, f) = /!jDU’ eXp[-@x - w,,t)] for which $n = I&~/(w + wO) for 12 = -.U&?~ 
and ,& = 0 for 12 # -kL/2z-. The dispersion function becomes 
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Substituting the proper terms from Eq. (C7) into Eq. (C8) and retaining only the 
second term in bracket in Eq. (C7) which is dominant yields 

where $n = Jn& . Taking the inverse Laplace transform of Eq. (C9) gives discrete 
effect contributions from the single pole at QJ = -w~-u(~+,,)~~ and the double-pole 
at 0~ = -cdc-q-n+9J~~. Considering only the largest terms in the sum which 
correspond to q = 0 and p = &I yields Eqs. (23) and (24). 
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